

Information

4k statischer RAM 2114

Die Schaltkreise des Typs 2114 sind hochintegrierte statische Schreib-Lese-Speicher (sRAM) mit wahlfreiem Zugriff. Die Speicher sind in der Form 1024×4 bit organisiert. Die 2114 werden in n-Kanal-MOS-Technologie mit einer Polysiliziumebene gefertigt.

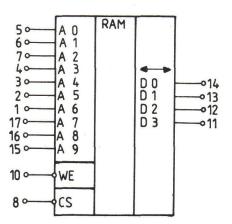


Bild 1: Anschlußbelegung und Schaltungskurzzeichen

Bezeichnung der Anschlüsse:

A 0	A	9	Adresseneingänge
D 0	D	3	Datenein- und -ausgänge
WE		1	Schreibsignal
CS			Chip-select-Eingang
Ucc			Betriebsspannung
USS			Bezugspotential
00			

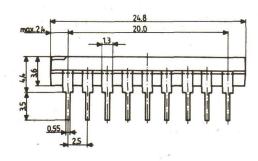


Bild 2: Gehäuseabmessungen

Beschreibung

Die Schaltkreise des Typs 2114 besitzen eine Speichermatrix von 64 Zeilen und 64 Spalten. Zur Adressierung über 10 Adressenleitungen stehen 64 Zeilen- und 16 Spaltendekoder zur Verfügung. Die Datenein- bzw. -ausgabe erfolgt über vier bidirektionale Datenein- bzw. -ausgangsstufen mit Leseverstärker.

Die Schaltkreise besitzen eine Chip-select-Eingang ($\overline{\text{CS}}$). Liegt an diesem Eingang L-Pegel an, ist der Schaltkreis aktiviert. Bei $\overline{\text{CS}}$ = H-Pegel sind die tristate-Ausgangsstufen hochohmig. In diesem Zustand wird nur die Ruheverlustleistung aufgenommen.

Die 2114 können in den Betriebsarten "Lesen" und "Schreiben" arbeiten.

In der Betriebsart "Lesen" ($\overline{ ext{CS}}$ = U_{IL}; $\overline{ ext{WE}}$ = U_{IH}) liegen die Daten der durch die Adreßpins A O ... A 9 adressierten Speicherzellen nach der Zugrifsszeit gültig an den Datenausgängen D O ... D 3 an.

In der Betriebsart "Schreiben" ($\overline{\text{CS}}$ = U_{IL} ; $\overline{\text{WE}}$ = U_{IL}) werden die an den Datenpins D O bis D 3 anliegenden Daten in die adressierten Speicherzellen übernommen.

Die Schaltkreise verlangen während des gesamten Speicherzyklusses eine stabil anliegende Adresse. Alle Ein- und Ausgänge der 2114 sind TTL-kompatibel. Mit einem 2114 lassen sich eine TTL- bzw. 5 Low-power-Schotkky-TTL-Lasten treiben.

Die Schaltkreise 2114 besitzen einen chipinternen Substratvorspannungsgenerator. Durch die damit verbundene Verringerung der Sperrschichtkapazität wird eine höhere Geschwindigkeit erreicht. Gleichzeitig ist durch die negative Substratvorspannung (-2,5 V) eine negative Eingangsspannung (bis -1 V) zulässig.

Hauptsächlich werden diese Schaltkreise in Arbeitsspeicheranordnungen für Mikroprozessorsysteme eingesetzt.

Zustand CS WE DOD3			Bemerkungen			
Ruhezustand Schreiben L Schreiben H Lesen	H L L	X L L	x L H 〈 A: 〉	Ausgang hochohmig, Eingang gesperrt Ausgang hochohmig, Eingang aktiv Ausgang hochohmig, Eingang aktiv Eingabe gesperrt		

x) beliebiger Zustand

 $\langle A: \rangle$) Inhalt des ausgewählten Speicherwertes

Tabelle 1: Zustandstabelle des 2114

Grenzwerte

Kennwert	Kurz- zeichen	min.	max,	Einheit
Betriebsspannung Eingangsspannung an allen Eingängen	n ^I ncc	0 -1,5	7 7	V V
Ausgangsspannung Ausgangskurzschlußstrom Verlustleistung Betriebstemperatur Lagerungstemperatur	υ _O I _{DS} ዮγ ϑ _{ap} ϑstg	-1,5 0 -55	7 5 1 70 125	V mA W C C

Statische Betriebsbedingungen

(bezogen auf $U_{SS} = 0 V$)

Kennwert	Kurz- zeìchen	min.	typ.	max.	Einheit
Betriebsspannung Eingangsspannung L Eingangsspannung H Umgebungstemperatur	^U CC ^U IL ^U IH Va	4,75 -1 2 0	5 25	5,25 0,8 5,5 70	v v v °c

Dynamische Betriebsbedingungen

(bezogen auf $U_{SS} = 0 V$)

Kennwert	Kurz- zeichen	2114 D 3	max.	2114 D 20 min.	max.	Einheit
negative CS- Impulsdauer	^t CLCH	300		200	30	ns
Adressenzykluszeit	tAVAX	300		200		ns
Adressenvorhaltezeit	tAVWL	0		0		ns
Adressenhaltezeit	tWHAX	0		0		ns
negative WE- Impulsdauer	tWLWH	230		180		ns
WE-Impulsvorhalte- zeit	t _{WLCH}	230		180		ns
WE-Impulshaltezeit	^t CLWH	280		200		ns
Datenvorhaltezeit	tDVWH	150		100		ns
Datenhaltezeit	twhox	0		0		ns
Ausgangsinformation gültig nach Adressenwechsel	tAXDXX	0		0		ns
Verzögerung CS ~ Ausgang aktiv	^t CLDX	0		0		ns

Statische Kennwerte

(bezogen auf U_{SS} = 0 V)

Kennwert	Kurz- zeichen	Meßbedingungen	Тур	min.	max.	Einheit
Eingangsleckstrom	IIL	U _{CC} = 5,25 V; U _{IL} = 0 V; U _{IH} = 5,25 V			10	μΑ
Ausgangsspannung L	U _{OL}	$I_0 = 2 mA;$ $U_{CC} = 4,75 V$			0,4	V
Ausgangsspannung H	и _{он}	$I_0 = -0, 4 \text{ mA};$ $U_{CC} = 4,75 \text{ V}$		2,4		V
Betriebsstrom-	ICCOP	U _{CC} = 5 V;	2114 D 30		95	m A
verbrauch		U _{IL} = 0 V; U _{IH} = 5 V	2114 D 20		120	m A
Ruhestromverbrauch	ICCR	$U_{CC} = 5$ V; $U_{IL} = 0$ V; $U_{IH} = 5$ V; $V_{a} = 25$ °C	4		40	mA
Eingangskapazität	CI				10	pF

Dynamische Kennwerte

Kennwert	Kurz- zeichen	Meßbedingungen	Тур	min.	max.	Einheit
CS-Zugriffszeit	^t CLDV	U _{CC} = 4,75 V	2114 D 30 2114 D 20		300 200	ns ns
Adressenzugriffs- zeit	^t AVDV	U _{CC} = 4,75 V	2114 D 30 2114 D 20		300 200	ns ns
Verzögerung¹ CS – 'Ausgang hochohmig	^t CHDZ	$U_{CC} = 4,75 \text{ V};$ $U_{IL} = 0 \text{ V};$ $U_{IH} = 4,75 \text{ V};$ $\vartheta_{a} = 25 ^{\circ}\text{C}$	2114 D 30 2114 D 20		80 60	ns ns
Verzögerung WE - Ausgang hochohmig	^t WLDZ	$U_{CC} = 4,75 \text{ V};$ $U_{IL} = 0 \text{ V};$ $U_{IH} = 4,75 \text{ V};$ $\hat{v}_{a} = 25 \text{ C}$	2114 D 30 2114 D 20		80 60	ns ns
Verzögerung WE - Ausgang aktiv	^t wHDO			10		ns

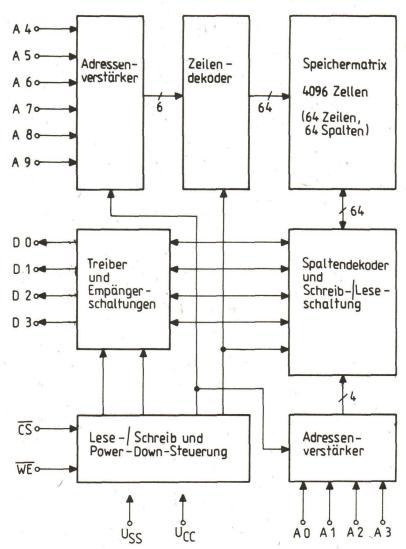


Bild 3: Blockschaltbild

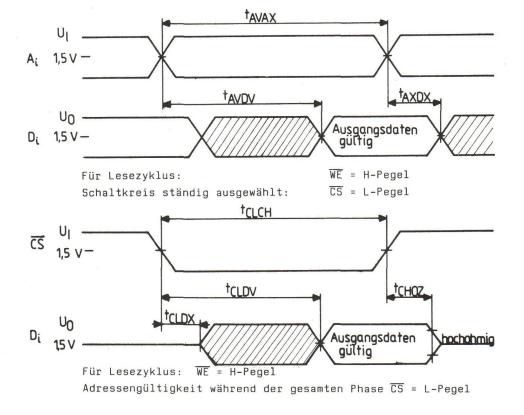


Bild 4: Impulsdiagramm Lesezyklus

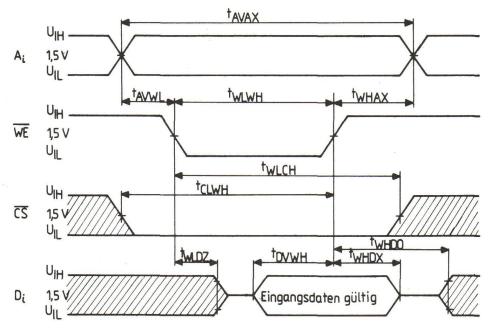


Bild 5: Impulsdiagramm Schreibzyklus

veb mikroelektronik karl marx erfurt stammbetrieb

DDR-5023 Erfurt, Rudolfstraße 47 Telefon 5 **8**0, Telex 061 306

elektronik export-import

Volkseigener Außenhandelsbetrieb der Deutschen Demokratischen Republik DDR - 1026 Berlin, Alexanderplatz 6 Telex: BLN 114721 elei, Telefon: 2180